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W H Y  I S  T H E  L I G H T  N E U T R I N O  S C E N A R I O  
M O T I VAT E D ?  W H AT  M AY  W E  L E A R N  F R O M  

A  P O T E N T I A L  O B S E R VAT I O N ?  



A B S O L U T E  VA L U E S  C A N  B E  C O N S T R A I N E D  B Y:

hm�i2 = m2
1|Ue1|2 +m2

2|Ue2|2 +m2
3|Ue3|2

⌃ = m1 +m2 +m3

hm��i =
���m1|Ue1|2 +m2|Ue2|2ei(↵2�↵1) +m3|Ue3|2e�i(↵1+2�)

���
e

e

e

ve

N E U T R I N O S  H AV E  M A S S  A N D  
O S C I L L AT E  I N T O  E A C H  O T H E R !

m2
2 �m2

1

|m2
3 �m2

2|

S O  T H E  L I G H T  N E U T R I N O  S C E N A R I O  I S  I N T E R E S T I N G  
I N  L I G H T  O F  O T H E R  N E U T R I N O  E X P E R I M E N T S

M I X I N G  M AT R I X  U

KamiokaNDE SNO



mlightest [eV]

hm
�
�
i[
eV

]
D O T T E D  L I N E  I S  T H E  R E A C H  O F  A  T O N - S C A L E  E X P E R I M E N T.

D
IS

FA
V

O
R

E
D

 B
Y

 C
O

S
M

O
LO

G
Y

T H E  L I G H T  N E U T R I N O  S C E N A R I O  I S  W E L L  M O T I VAT E D  
I N  L I G H T  O F  O T H E R  N E U T R I N O  E X P E R I M E N T S

D I S C O V E R Y  I S  P O S S I B L E  W I T H I N  T H I S  S C E N A R I O  I F  S P E C T R U M  I S  
I N V E R T E D  O R  I F  T H E  L I G H T E S T  M A S S  I S  G R E AT E R  T H A N  ~ 5 0  meV.

Dell’Oro, Marcocci, Viel and Vissani, Advances in High Energy Physics, Volume 2016 (2016)
Carolina Lujan-PeschardGiulia PagliaroliFrancesco Vissani, Eur.Phys.J. C73 (2013) 2439



mlightest [eV]

hm
�
�
i[
eV

]
D O T T E D  L I N E  I S  T H E  R E A C H  O F  A  T O N - S C A L E  E X P E R I M E N T.

D
IS

FA
V

O
R

E
D

 B
Y

 C
O

S
M

O
LO

G
Y

T H E  L I G H T  N E U T R I N O  S C E N A R I O  I S  W E L L  M O T I VAT E D  
I N  L I G H T  O F  O T H E R  N E U T R I N O  E X P E R I M E N T S

D I S C O V E R Y  I S  P O S S I B L E  W I T H I N  T H I S  S C E N A R I O  I F  S P E C T R U M  I S  
I N V E R T E D  O R  I F  T H E  L I G H T E S T  M A S S  I S  G R E AT E R  T H A N  ~ 5 0  meV.

Dell’Oro, Marcocci, Viel and Vissani, Advances in High Energy Physics, Volume 2016 (2016)
Carolina Lujan-PeschardGiulia PagliaroliFrancesco Vissani, Eur.Phys.J. C73 (2013) 2439



C U R R E N T  S TAT U S  O F  N U C L E A R  M AT R I X  E L E M E N T S

Rep. Prog. Phys. 75 (2012) 106301 J D Vergados et al

Table 3. The NME of the 0νββ-decay M0ν
ν calculated within the framework of different approaches: ISM [236, 296], QRPA

[184, 291, 299–301], projected Hartree–Fock Bogoliubov approach (PHFB, PQQ2 parametrization) [129], EDF [131] and interacting boson
model (IBM) [130]. QRPA(TBC) and QRPA(J) denote QRPA results of Tuebingen–Bratislava–Caltech (TBC) and Jyvaskyla (J) groups,
respectively. The Miller–Spencer Jastrow two-nucleon short-range correlations are taken into account. The EDF results are multiplied by
0.80 in order to account for the difference between UCOM and Jastrow [292]. geff

A = gA = 1.25 and R = 1.2 fmA1/3 are assumed.

|M0ν
ν |

ISM QRPA (TBC) QRPA (J) IBM-2 PHFB EDF
Transition [236, 296] [291, 184] [299, 300, 301] [130] [129] [131]

48Ca → 48Ti 0.61, 0.57 1.91
76Ge → 72Se 2.30 4.92 4.72 5.47 3.70
82Se → 82Kr 2.18 4.39 2.77 4.41 3.39
96Zr → 96Mo 1.22 2.45 2.78 4.54
100Mo → 100Ru 3.64 2.91 3.73 6.55 4.08
110Pd → 110Cd 3.86
116Cd → 116Sn 2.99 3.17 3.80
124Sn → 124Te 2.10 2.65 3.87
128Te → 128Xe 2.34 3.97 3.56 4.52 3.89 3.30
130Te → 130Xe 2.12 3.56 3.28 4.06 4.36 4.12
136Xe → 136Ba 1.76 2.30 2.54 3.38
150Nd → 150Sm 3.16 2.32 3.16 1.37

[298] (the EDF values are multiplied by 0.80 in order to account
for the difference between the unitary correlation operator
method (UCOM) and the Jastrow approach [292]), the same
nucleon dipole form factors, higher order corrections to the
nucleon current and the nuclear radius R = r0A

1/3, with
r0 = 1.2 fm (the QRPA values [290, 291] for r0 = 1.1 fm
are rescaled with the factor 1.2/1.1). Thus, the discrepancies
among the results of different approaches are solely related
to the approximations on which a given nuclear many-body
method is based.

From table 3 we can draw the following conclusions:

(i) The ISM values of NMEs, with the exception of the NME
for the double magic nucleus 48Ca, practically do not
depend on the nucleus. They are significantly smaller, by
about a factor 2–3, when compared with NMEs of other
approaches.

(ii) The largest values of NME are obtained in the IBM
(76Ge and 128Te), PHFB (100Mo, 130Te and 150Nd), QRPA
(150Nd) and EDF (48Ca, 96Zr, 116Cd, 124Sn and 136Xe)
approaches.

(iii) NMEs obtained by the QRPA(TBC) and IBM methods are
in good agreement (with the exception of 150Nd).

(iv) In the case of 130Te all discussed methods, with the
exception of the ISM, give practically the same result.

(v) The disagreement between IBM-2 and ISM is particularly
troublesome, because IBM-2 is a truncation of the shell-
model space to the S and D pair space and, in the limit
of spherical nuclei, IBM-2 and ISM should produce the
same results.

(vi) The disagreement between the QRPA(TBC) and QRPA(J)
results is not large but it needs to be clarified.

Comparing 0νββ-decay NMEs calculated by different
methods gives some insight into the advantages or
disadvantages of different candidate nuclei. However, matrix
elements are not the only relevant quantities (see section 8 for
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Figure 24. The 0νββ-decay half-lives of nuclei of experimental
interest for |⟨mν⟩| = 50 meV and NMEs of different approaches. The
Miller–Spencer Jastrow two-nucleon short-range correlations are con-
sidered. The axial-vector coupling constant gA is assumed to be 1.25.

the nuclear-sensitivity factor). Experimentally, half-lives are
measured or constrained, and the effective Majorana neutrino
mass ⟨mν⟩ is the ultimate goal. For |⟨mν⟩| equal to 50 meV the
calculated half-lives for double β-decaying nuclei of interest
are presented in figure 24. We see that the spread of half-lives
for a given isotope is up to the factor of 4–5.

It is worth noting that due to the theoretical efforts made
over the last years the disagreement among different NMEs
is now much less severe than it was about a decade before.
Nevertheless the present-day situation with the calculation
of 0νββ-decay NMEs cannot be considered as completely
satisfactory. Further progress is required and it is believed that
the situation will improve with time. Accurate determination
of the NMEs, and a realistic estimate of their uncertainty, is of
great importance. NMEs need to be evaluated with uncertainty
of less than 30% to establish the neutrino-mass spectrum and
CP-violating phases of the neutrino mixing.
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used to extract the requisite linear and quadratic responses. The points denote the results of numerical
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produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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agators on a given configuration at a given time (each configuration and timeslice shows similar poly-
nomial behavior). The quantities shown are correlation functions with the zero-field limit subtracted:

Ĉ
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Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
ratio Rnn!pp(t) and derived quantities, fits can only be performed over timeslices equal to or larger
than this threshold, even though the ratios may appear to plateau earlier.

The quantity R

+
3S1,1S0

(t), defined in Eq. (26), is shown in the left panel of Fig. 4, along with a fit
to this quantity at late times which is used to determine the value of the pp ! d axial transition
matrix element. In addition, the quantity R

�
3S1,1S0

(t), used to estimate the e↵ects of excited states
contaminating the extraction of the pp ! d transition matrix element, is shown in the right panel
of Fig. 4. The late-time behavior of this quantity saturates to a very small value indicating that the
Nc scaling is borne out (recall from Sec. III B 2 that this quantity vanishes as 1/N

4
c based on a large-

Nc analysis). With this supporting evidence, it is reasonable to conclude that the contaminating
term c� in Eq. (22) is O(1/N

4
c ) ⇠ O(1%) of the dominant term. To account for this systematic

e↵ect, an additional Wigner symmetry-breaking uncertainty of this size is added to the value of
the bare hd|J̃+

3 |ppi matrix element extracted from the late-time asymptote of R

+
3S1,1S0

(t).

Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each bootstrap
ensemble allow for the deuteron-pole term to be determined and subtracted in a correlated manner
(in all cases, the statistically cleaner SP results are used for this subtraction in the results shown
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FIG. 3. The ratios of correlation functions that deter-
mine the unrenormalized isovector axial matrix element in
the Jz = Iz = 0 coupled two-nucleon system (upper panel),
and the unrenormalized di↵erence between the axial matrix
element in this channel and 2gA (lower panel). The orange di-
amonds (blue circles) correspond to the SS (SP) e↵ective cor-
relator ratios and the bands correspond to fits to the asymp-
totic plateau behavior and include the statistical and fitting
systematic uncertainties.

matrix elements and transition amplitudes requires the
framework developed in Refs. [62, 63].

To isolate the two-body contribution, the combina-
tion L

sd�2b
1,A (t)/ZA = [R3S1,1S0

(t) � 2Rp(t)]/2 is formed
as shown in the lower panel of Fig. 3. Taking advantage
of the near-degeneracy of the 3

S1 and 1
S0 two-nucleon

channels at the quark masses used in this calculation, it
is straightforward to show that this correlated di↵erence
leads directly to the short-distance two-nucleon quantity,
L

sd�2b
1,A . Fitting a constant to the late-time behavior of

this quantity leads to

L

sd�2b
1,A

ZA
=

⌦
3
S1; Jz = 0

��
A

3
3

�� 1
S0; Iz = 0

↵� 2gA
2ZA

= �0.011(01)(15) , (13)

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.

In light of the mild quark-mass dependence of the anal-
ogous short-distance, two-body quantity contributing to
np ! d� [39], Lsd�2b

1,A is likely to be largely insensitive to
the pion mass between m⇡ ⇠ 806 MeV and its physical
value. This approximate independence and the associ-
ated systematic uncertainty will need to be refined in
subsequent calculations. Based on this expectation, the
result obtained here atm⇡ ⇠ 806 MeV is used to estimate
the value of Lsd�2b

1,A at the physical pion mass by includ-
ing an additional 50% additive uncertainty. Propagating
this uncertainty through Eq. (8), the threshold value of
⇤(p) in this system at the physical quark masses is deter-
mined to be ⇤(0) = 2.659(2)(9)(5), where the uncertain-
ties are statistical, fitting and analysis systematic, and

quark-mass extrapolation systematic, respectively. Un-
certainties in the scattering parameters and other physi-
cal mass inputs are also propagated and included in the
systematic uncertainty. This result is remarkably close to
the currently accepted, precise phenomenological value,
⇤(0) = 2.65(1) [11] (see also Ref. [64]). The N2LO rela-
tion of Ref. [4], when enhanced by the summation of the
e↵ective ranges to all orders using the dibaryon field ap-
proach [10, 59, 60], gives ⇤(0) = 2.62(1) + 0.0105(1)L1,A,
enabling a determination of the ⇡/EFT coupling blue

L1,A = 3.9(0.2)(1.0)(0.4)(0.9) fm3
, (14)

at a renormalization scale µ = m⇡. The uncertainties
are statistical, fitting and analysis systematic, mass ex-
trapolation systematic, and a power-counting estimate
of higher order corrections in ⇡/EFT, respectively. This
value is also very close to previous phenomenological es-
timates, as summarized in Refs. [11, 14].

Summary: The primary results of this work are the
isovector axial-current matrix elements in two and three-
nucleon systems calculated directly from the underly-
ing theory of the strong interactions using lattice QCD.
These matrix elements determine the cross section for the
pp fusion process pp ! de

+
⌫ and the Gamow-Teller con-

tribution to tritium �-decay, 3H ! 3He e

�
⌫. While the

calculations are performed at unphysical quark masses
corresponding to m⇡ ⇠ 806 MeV and at a single lattice
spacing and volume, the mild mass dependence of the
analogous short-distance quantity in the np ! d� mag-
netic transition enables an estimate of the pp ! de

+
⌫

matrix element at the physical point, and the results are
found to agree within uncertainties with phenomenol-
ogy. Future LQCD calculations including electromag-
netic e↵ects beyond Coulomb at lighter quark masses
with isospin splittings, larger volumes, and finer lattice
spacings, making use of the new techniques that are in-
troduced here, will enable extractions of these axial ma-
trix elements with fully quantified uncertainties and will
be of great importance in phenomenology, providing in-
creasingly precise values for the pp-fusion cross section
and GT matrix element in tritium �-decay.
Beyond the current study, background axial-field cal-

culations also allow the extraction of second-order, as
well as momentum-dependent, responses to axial fields.
Second-order responses are important for determining
nuclear ��-decay matrix elements, both with and with-
out (for a light Majorana neutrino) the emission of associ-
ated neutrinos. Momentum-dependent axial background
fields will allow the determination of nuclear e↵ects in
neutrino-nucleus scattering. In both cases, LQCD calcu-
lations of these quantities in light nuclei will provide vi-
tal input with which to constrain the nuclear many-body
methods that are used to determine the matrix elements
for these processes in heavy nuclei.
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compared with the inverse of the time separation between the source and the sink used to ex-
tract the matrix elements, while the energy splittings between ground and exited states in both
channels are assumed to be large, so that e

��l0 t ! 0 and e

��nt ! 0. If this is not the situation,
the correlation functions with background-field insertions on all timeslices cannot be used to un-
ambiguously extract the terms relevant for this analysis.7 In the numerical calculations discussed
below, the requisite hierarchy is found to be satisfied. As the deuteron is lower in energy than
the dinucleon external states, and hence gives rise to a growing exponential contribution (after the
overall exponential e

�Ennt is factored out of Eq. (32)), this contribution has been singled out in the
summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if � = 0), and the coe�cient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn!pp(t) =
Cnn!pp(t)

2C

(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form

a

2Rnn!pp(t) =



�t +
e

�t � 1

�

� hpp|J̃+
3 |dihd|J̃+

3 |nni
�

+ t

X

l0 6=d

hpp|J̃+
3 |l0ihl0|J̃+

3 |nni
�l0

+ C + D e

�t + O(e��t
, e

��0t), (34)

where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined in
Eq. (4). The coe�cients C and D are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

C. Finite-volume e↵ects

The initial and final states in the nn ! pp transition are deeply bound degenerate states at the
SU(3) flavor-symmetric set of quark masses used in this work, which considerably simplifies the
analysis. In addition, the dominant intermediate state that propagates between the two currents
is the deuteron, which is close in energy to the nn and pp states, with no other intermediate states
able to go on shell at the kinematic threshold. As the deuteron is also a compact bound state in
this calculation, there is no complication with regard to finite-volume two-particle states and only
exponentially small volume e↵ects are anticipated. A similar problem has been studied in detail
in the case of long-distance contributions to the KL–KS mass di↵erence [23]. There, however,
a tower of intermediate two-pion states with energies lower than the initial-state kaon must be
dealt with explicitly, introducing power-law corrections to the relation between the infinite-volume
and finite-volume matrix elements (see also the related discussions of the rare weak processes
K ! ⇡⌫⌫ [24, 26] and K ! ⇡`

+
`

� [25, 54]). Such calculations will become increasingly di�cult as
the large volume limit is approached. As the present calculations of two-nucleon matrix elements are

7 Inserting the background field on a range of timeslices separated from the source and sink can address this issue
[22], provided the separation is su�ciently large.
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summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if � = 0), and the coe�cient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn!pp(t) =
Cnn!pp(t)

2C

(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form

a

2Rnn!pp(t) =



�t +
e

�t � 1

�

� hpp|J̃+
3 |dihd|J̃+

3 |nni
�

+ t
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l0 6=d
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3 |nni
�l0

+ C + D e

�t + O(e��t
, e

��0t), (34)

where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined in
Eq. (4). The coe�cients C and D are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

C. Finite-volume e↵ects

The initial and final states in the nn ! pp transition are deeply bound degenerate states at the
SU(3) flavor-symmetric set of quark masses used in this work, which considerably simplifies the
analysis. In addition, the dominant intermediate state that propagates between the two currents
is the deuteron, which is close in energy to the nn and pp states, with no other intermediate states
able to go on shell at the kinematic threshold. As the deuteron is also a compact bound state in
this calculation, there is no complication with regard to finite-volume two-particle states and only
exponentially small volume e↵ects are anticipated. A similar problem has been studied in detail
in the case of long-distance contributions to the KL–KS mass di↵erence [23]. There, however,
a tower of intermediate two-pion states with energies lower than the initial-state kaon must be
dealt with explicitly, introducing power-law corrections to the relation between the infinite-volume
and finite-volume matrix elements (see also the related discussions of the rare weak processes
K ! ⇡⌫⌫ [24, 26] and K ! ⇡`

+
`

� [25, 54]). Such calculations will become increasingly di�cult as
the large volume limit is approached. As the present calculations of two-nucleon matrix elements are

7 Inserting the background field on a range of timeslices separated from the source and sink can address this issue
[22], provided the separation is su�ciently large.
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FIG. 4. The left panel shows the quantity R
+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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FIG. 6. (a) The combination R(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘
0

@

Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A

. (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘
0

@

Zs 0 0
0 Zt 0
0 0 Zs

1

A

, (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0

B

@

Ds �il̃1,ADsDt� (�ih̃2,S � l̃

2
1,ADt)Ds

2
�

2

�il̃1,ADsDt� Dt �il̃1,ADsDt�

(�ih̃2,S � l̃

2
1,ADt)Ds

2
�

2 �il̃1,ADsDt� Ds

1

C

A

,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

3S1
1S0
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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where E denotes the total energy of the two-nucleon state, and the total momentum is projected
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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where E denotes the total energy of the two-nucleon state, and the total momentum is projected
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form
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where E denotes the total energy of the two-nucleon state, and the total momentum is projected
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.
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The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+
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+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+
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+
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construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

1S0

++++iCnn!pp =

17

FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform
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whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
Ageneralizedbarepropagatormatrix,D,atsecondorderintheweakfieldisintroduced,

D⌘

0

B

@

Ds�ĩl1,ADsDt�(�ĩh2,S�l̃
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(�ĩh2,S�l̃

2
1,ADt)Ds

2
�
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+

3⇠⌧

+
�3),itisconvenientto

constructthecorrelationfunctionmatrixinthe{nn,np(3S1),pp}channelchannels.Explicitly,
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1
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whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A
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µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A
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µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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elementinducedbythebackgroundaxialfieldusedinthiswork(A+
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1

13⇥3�I(E)·D(E)
·Z†

,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+

3⇠⌧

+
�3),itisconvenientto
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1

13⇥3�I(E)·D(E)
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,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1
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whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
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whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
Ageneralizedbarepropagatormatrix,D,atsecondorderintheweakfieldisintroduced,
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Ds�ĩl1,ADsDt�(�ĩh2,S�l̃

2
1,ADt)Ds

2
�

2
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘
0

@

Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A

. (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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0 Zt 0
0 0 Zs

1

A

, (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients g

A and l

1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ
A+

⌫ , described by Eq. (45),
with coe�cient h

2,S . The first two interactions gives rise to an e↵ectively quenched value of g

A in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A

+
3 ⇠ ⌧+�

3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E) · Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+
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�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1
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, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0

B

@
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2
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1

C
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,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

A short-range contribution not 
accounted for before

Give partly the dominant long-range contribution
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Table 3. The NME of the 0νββ-decay M0ν
ν calculated within the framework of different approaches: ISM [236, 296], QRPA

[184, 291, 299–301], projected Hartree–Fock Bogoliubov approach (PHFB, PQQ2 parametrization) [129], EDF [131] and interacting boson
model (IBM) [130]. QRPA(TBC) and QRPA(J) denote QRPA results of Tuebingen–Bratislava–Caltech (TBC) and Jyvaskyla (J) groups,
respectively. The Miller–Spencer Jastrow two-nucleon short-range correlations are taken into account. The EDF results are multiplied by
0.80 in order to account for the difference between UCOM and Jastrow [292]. geff

A = gA = 1.25 and R = 1.2 fmA1/3 are assumed.

|M0ν
ν |

ISM QRPA (TBC) QRPA (J) IBM-2 PHFB EDF
Transition [236, 296] [291, 184] [299, 300, 301] [130] [129] [131]

48Ca → 48Ti 0.61, 0.57 1.91
76Ge → 72Se 2.30 4.92 4.72 5.47 3.70
82Se → 82Kr 2.18 4.39 2.77 4.41 3.39
96Zr → 96Mo 1.22 2.45 2.78 4.54
100Mo → 100Ru 3.64 2.91 3.73 6.55 4.08
110Pd → 110Cd 3.86
116Cd → 116Sn 2.99 3.17 3.80
124Sn → 124Te 2.10 2.65 3.87
128Te → 128Xe 2.34 3.97 3.56 4.52 3.89 3.30
130Te → 130Xe 2.12 3.56 3.28 4.06 4.36 4.12
136Xe → 136Ba 1.76 2.30 2.54 3.38
150Nd → 150Sm 3.16 2.32 3.16 1.37

[298] (the EDF values are multiplied by 0.80 in order to account
for the difference between the unitary correlation operator
method (UCOM) and the Jastrow approach [292]), the same
nucleon dipole form factors, higher order corrections to the
nucleon current and the nuclear radius R = r0A

1/3, with
r0 = 1.2 fm (the QRPA values [290, 291] for r0 = 1.1 fm
are rescaled with the factor 1.2/1.1). Thus, the discrepancies
among the results of different approaches are solely related
to the approximations on which a given nuclear many-body
method is based.

From table 3 we can draw the following conclusions:

(i) The ISM values of NMEs, with the exception of the NME
for the double magic nucleus 48Ca, practically do not
depend on the nucleus. They are significantly smaller, by
about a factor 2–3, when compared with NMEs of other
approaches.

(ii) The largest values of NME are obtained in the IBM
(76Ge and 128Te), PHFB (100Mo, 130Te and 150Nd), QRPA
(150Nd) and EDF (48Ca, 96Zr, 116Cd, 124Sn and 136Xe)
approaches.

(iii) NMEs obtained by the QRPA(TBC) and IBM methods are
in good agreement (with the exception of 150Nd).

(iv) In the case of 130Te all discussed methods, with the
exception of the ISM, give practically the same result.

(v) The disagreement between IBM-2 and ISM is particularly
troublesome, because IBM-2 is a truncation of the shell-
model space to the S and D pair space and, in the limit
of spherical nuclei, IBM-2 and ISM should produce the
same results.

(vi) The disagreement between the QRPA(TBC) and QRPA(J)
results is not large but it needs to be clarified.

Comparing 0νββ-decay NMEs calculated by different
methods gives some insight into the advantages or
disadvantages of different candidate nuclei. However, matrix
elements are not the only relevant quantities (see section 8 for
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Figure 24. The 0νββ-decay half-lives of nuclei of experimental
interest for |⟨mν⟩| = 50 meV and NMEs of different approaches. The
Miller–Spencer Jastrow two-nucleon short-range correlations are con-
sidered. The axial-vector coupling constant gA is assumed to be 1.25.

the nuclear-sensitivity factor). Experimentally, half-lives are
measured or constrained, and the effective Majorana neutrino
mass ⟨mν⟩ is the ultimate goal. For |⟨mν⟩| equal to 50 meV the
calculated half-lives for double β-decaying nuclei of interest
are presented in figure 24. We see that the spread of half-lives
for a given isotope is up to the factor of 4–5.

It is worth noting that due to the theoretical efforts made
over the last years the disagreement among different NMEs
is now much less severe than it was about a decade before.
Nevertheless the present-day situation with the calculation
of 0νββ-decay NMEs cannot be considered as completely
satisfactory. Further progress is required and it is believed that
the situation will improve with time. Accurate determination
of the NMEs, and a realistic estimate of their uncertainty, is of
great importance. NMEs need to be evaluated with uncertainty
of less than 30% to establish the neutrino-mass spectrum and
CP-violating phases of the neutrino mixing.
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